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1) R k3. txt

async def stream(self, query_in: str,

context_id: str) —> AsyncGenerator[dict[str, Any], None]:
# T —X
yield {
“is_task_complete”: False,
“require_user_input”: False,

“content”: "ANEHEITLTULET ",

# BMHEMGEI TR DR
if context_id not in self.context_ |d2query
self. context_id2query[context_id] =
self. context_id2query[context_id] += query in + “¥n”
query = self. context_id2query[context_id]

c_from, c_to, date_raw, parse_err = self._extract_params (query)
if parse_err:
yield {
“is_task_complete”: False,
"require_user input”: True,
“content”: f’ J\jdﬁ¢tﬁl fEE&l,EEl,1>' {parse_err}¥n”
“f51: "USD EUR®
“/ \usd jpy 2024-06-01" .
| "/ K FILEI—OIC ﬁi@@ﬁﬂzé

return

missing = []
if not c_from: .
missing. append " BE (L, 3XFa—FK) )

if not c_to:

missing. append (" BE (LHkL, 3IXFa—K) ")
if missing:

yield {

“is_task _complete”: False,

"require_user_input”: True,

"content ( .

%%b k= Hn s ?6#%L&®Tﬁﬁ%%f?:"
£ &’ J0|n(m|SS|ng)} ¥n”

“t5l: “USD EUR® 4> ‘usd jpy £BEDLE

J

return

if c_from == ¢_to:
yield {
“is_task_complete”: True,
“require_user_input”: False,
“content”: f"{c_from} & {c_to} IFE—BETT, HFL—FIFEIZ 1.0 T, 7,

return

#Q?Eﬁm(%?wﬁ%)
yie
“is_task _complete”: False,
“require_user_input”: False,
“content”: f"BA{tZMIRLTULVET - (3§%: [date_raw or 'latest'}) ”,

date_norm, date_warn = self. _normalize date(date raw or “latest”)

t L— MRS
yield {
“is_task_complete”: False,
”require_user input”: False,
} “content”: f"AEL— FZEEEP--- ({c_from} — {c_to}, Bft: {date_norm}) ”,

data = get_exchange_rate(c_from, c_to, date_norm)

B

yield {
“is_task_complete”: False,
“require_user_input”: False,
“content”: "$EREFEBRELTULET ",

if “error” in data
msg = T"EUIFICHKBA L E LT : {data[ error’ ]}¥n”
if date_warn:
msg += f7#@E: [date_warn}¥n” o
msglJé:{"iE‘éf:l— k(% USD EWR) &, BELGLBASHECTHHZEELTEBRERITLTLEEL,
yie
“is_task _complete”: False,
“require_user_input”: True,
“content”: msg,

return



1) R k3. txt

rate = data. get (“rates”, {}).get(c_to)
if rate is None:
yield {
“is_task_complete”: False,
“require_user_input”: True, .
“content”: “EEDNDBEEI— FAFEDN., L— FHARBTEEFLEATL, ¥
} “f5: "USD EUR 2024-06-01" %> "USD EUR last Friday , ”,

return

date_used = data. get ("date”, date_norm)
inv = 1.0 / rate if rate else None

lines = [
" [B&L— k] {c_from} — {c_to}”,
f’- Bft: {date_used}”,
f”- 1 {c_from} = {rate:.6f} {c_to}”,

]
if inv:
lines. append (f"- 1 {c_to} = {inv:.6f} {c_from}”)
if date_warn:
| ines. append (f"¥n;¥: {date_warn}”)
yield {

"is_task_complete”: True
require_user_input”: False,
content”: “¥n”. join(lines),



