
リスト3.txt
001 async def stream(self, query_in: str,
002 context_id: str) -> AsyncGenerator[dict[str, Any], None]:
003 # 解析フェーズ
004 yield {
005 "is_task_complete": False,
006 "require_user_input": False,
007 "content": "入力を解析しています…",
008 }
009
010 # 簡易的なコンテキストの維持
011 if context_id not in self.context_id2query:
012 self.context_id2query[context_id] = ""
013 self.context_id2query[context_id] += query_in + "\n"
014 query = self.context_id2query[context_id]
015
016 c_from, c_to, date_raw, parse_err = self._extract_params(query)
017 if parse_err:
018 yield {
019 "is_task_complete": False,
020 "require_user_input": True,
021 "content": f"入力解析に失敗しました: {parse_err}\n"
022 "例: `USD EUR` "
023 "/ `usd jpy 2024-06-01` "
024 "/ `米ドルをユーロに 先週の金曜`",
025 }
026 return
027
028 missing = []
029 if not c_from:
030 missing.append("通貨（変換元, 3文字コード）")
031 if not c_to:
032 missing.append("通貨（変換先, 3文字コード）")
033
034 if missing:
035 yield {
036 "is_task_complete": False,
037 "require_user_input": True,
038 "content": (
039 "為替レートを取得するために次の情報が必要です："
040 f"{' と '.join(missing)}。\n"
041 "例: `USD EUR` や `usd jpy 先週の金曜`"
042),
043 }
044 return
045
046 if c_from == c_to:
047 yield {
048 "is_task_complete": True,
049 "require_user_input": False,
050 "content": f"{c_from} と {c_to} は同一通貨です。為替レートは常に 1.0 です。",
051 }
052 return
053
054 # 日付正規化（モデル解釈）
055 yield {
056 "is_task_complete": False,
057 "require_user_input": False,
058 "content": f"日付を解釈しています…（指定: {date_raw or 'latest'}）",
059 }
060 date_norm, date_warn = self._normalize_date(date_raw or "latest")
061
062 # レート取得
063 yield {
064 "is_task_complete": False,
065 "require_user_input": False,
066 "content": f"為替レートを取得中…（{c_from} → {c_to}, 日付: {date_norm}）",
067 }
068
069 data = get_exchange_rate(c_from, c_to, date_norm)
070
071 # 整形
072 yield {
073 "is_task_complete": False,
074 "require_user_input": False,
075 "content": "結果を整形しています…",
076 }
077
078 if "error" in data:
079 msg = f"取得に失敗しました：{data['error']}\n"
080 if date_warn:
081 msg += f"補足: {date_warn}\n"
082 msg += "通貨コード（例: USD EUR）と、必要なら自然言語で日付を指定して再実行してください。"
083 yield {
084 "is_task_complete": False,
085 "require_user_input": True,
086 "content": msg,
087 }
088 return

1

リスト3.txt
089
090 rate = data.get("rates", {}).get(c_to)
091 if rate is None:
092 yield {
093 "is_task_complete": False,
094 "require_user_input": True,
095 "content": "指定の通貨コードが不正か、レートが取得できませんでした。\n"
096 "例: `USD EUR 2024-06-01` や `USD EUR last Friday`。",
097 }
098 return
099
100 date_used = data.get("date", date_norm)
101 inv = 1.0 / rate if rate else None
102
103 lines = [
104 f"【為替レート】{c_from} → {c_to}",
105 f"- 日付: {date_used}",
106 f"- 1 {c_from} = {rate:.6f} {c_to}",
107]
108 if inv:
109 lines.append(f"- 1 {c_to} = {inv:.6f} {c_from}")
110 if date_warn:
111 lines.append(f"\n注: {date_warn}")
112
113 yield {
114 "is_task_complete": True,
115 "require_user_input": False,
116 "content": "\n".join(lines),
117 }

2

