001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088

1) R k3. txt

async def stream(self, query_in: str,

context_id: str) —> AsyncGenerator[dict[str, Any], None]:
T —X
yield {
“is_task_complete”: False,
“require_user_input”: False,

“content”: "ANEHEITLTULET ",

BMHEMGEI TR DR
if context_id not in self.context_ |d2query
self. context_id2query[context_id] =
self. context_id2query[context_id] += query in + “¥n”
query = self. context_id2query[context_id]

c_from, c_to, date_raw, parse_err = self._extract_params (query)
if parse_err:
yield {
“is_task_complete”: False,
"require_user input”: True,
“content”: f’ J\jdﬁ¢tﬁl fEE&l,EEl,1>' {parse_err}¥n”
“f51: "USD EUR®
“/ \usd jpy 2024-06-01" .
| "/ K FILEI—OIC ﬁi@@ﬁﬂzé

return

missing = []
if not c_from: .
missing. append " BE (L, 3XFa—FK))

if not c_to:

missing. append (" BE (LHkL, 3IXFa—K) ")
if missing:

yield {

“is_task _complete”: False,

"require_user_input”: True,

"content (.

%%b k= Hn s ?6#%L&®Tﬁﬁ%%f?:"
£ &’ J0|n(m|SS|ng)} ¥n”

“t5l: “USD EUR® 4> ‘usd jpy £BEDLE

J

return

if c_from == ¢_to:
yield {
“is_task_complete”: True,
“require_user_input”: False,
“content”: f"{c_from} & {c_to} IFE—BETT, HFL—FIFEIZ 1.0 T, 7,

return

#Q?Eﬁm(%?wﬁ%)
yie
“is_task _complete”: False,
“require_user_input”: False,
“content”: f"BA{tZMIRLTULVET - (3§%: [date_raw or 'latest'}) ”,

date_norm, date_warn = self. _normalize date(date raw or “latest”)

t L— MRS
yield {
“is_task_complete”: False,
”require_user input”: False,
} “content”: f"AEL— FZEEEP--- ({c_from} — {c_to}, Bft: {date_norm}) ”,

data = get_exchange_rate(c_from, c_to, date_norm)

B

yield {
“is_task_complete”: False,
“require_user_input”: False,
“content”: "$EREFEBRELTULET ",

if “error” in data
msg = T"EUIFICHKBA L E LT : {data[error’]}¥n”
if date_warn:
msg += f7#@E: [date_warn}¥n” o
msglJé:{"iE‘éf:l— k(% USD EWR) &, BELGLBASHECTHHZEELTEBRERITLTLEEL,
yie
“is_task _complete”: False,
“require_user_input”: True,
“content”: msg,

return

1) R k3. txt

rate = data. get (“rates”, {}).get(c_to)
if rate is None:
yield {
“is_task_complete”: False,
“require_user_input”: True, .
“content”: “EEDNDBEEI— FAFEDN., L— FHARBTEEFLEATL, ¥
} “f5: "USD EUR 2024-06-01" %> "USD EUR last Friday , ”,

return

date_used = data. get ("date”, date_norm)
inv = 1.0 / rate if rate else None

lines = [
" [B&L— k] {c_from} — {c_to}”,
f’- Bft: {date_used}”,
f”- 1 {c_from} = {rate:.6f} {c_to}”,

]
if inv:
lines. append (f"- 1 {c_to} = {inv:.6f} {c_from}”)
if date_warn:
| ines. append (f"¥n;¥: {date_warn}”)
yield {

"is_task_complete”: True
require_user_input”: False,
content”: “¥n”. join(lines),

