2022年10月号特集フォローアップ

ダウンロード・データあります

ラズパイ Picoの USB活用

第2回 USB CDC クラスを利用した Firmata ライブラリ

2022年10月号特集は「USBホスト&デバイス ラズ パイPico虎の巻」でした.特集では、TinyUSBのサ ンプル・プログラムを詳しく解説したり、USBホス ト、USBデバイスの製作事例を紹介したりしました. その中で、USB-I²Cブリッジについて、次のように解 説しました. I²Cブリッジ製品には以下があります.

1, USB HID クラスを利用したもの (2022年10月号 特集第3部第1章)

2, USBベンダ・クラスを利用したもの(2022年11 月号, pp.184-187)

3, USB CDC クラスを利用したもの (今回)

なお,上記1と2について,サポート・ページで公 開しています.

https://interface.cqpub.co.jp/
2311usb/

● 様々なプラットホームで利用できる

シリアル通信を利用したホストとデバイスの通信プロトコルとして、Firmataがあります. USBデバイスの場合には、USB CDCクラスを利用したUSBブリッジ機能を介して利用できます.

Firmata ライブラリは、シリアル通信 (USB CDC ク ラス)を利用して、ホストPC上のソフトウェアと通 信するためのFirmata プロトコルを実装しています (図1). Windows, Linux, macOSで動作します. こ れにより、使っているプログラミング環境用に独自の プロトコルやオブジェクトを作成しなくても、カスタ ム・ファームウェアを作成できます. Arduino IDEに 特化したFirmata ライブラリが公開されており、広く 利用されています. そこで RP2040 向けにビルドして 利用したいと思います.

USBディスクリプタ

Arduino IDEのボード・マネージャで「Arduino Mbed OS RP2040 Boards」→「Raspberry Pi Pico」を 選択したとき、USBディスクリプタ(図2)は、典型的 なCDCクラスのディスクリプタ構成になっています.

USB接続	ラズパイPico
	Firmataライブラリ (USB CDC クラス)

ホストPCからシリアル通信 ペースのFirmataプロトコル によりコマンドが送信される. Windows, Linux, macOS 向けにさまざまな言語の ライブラリが公開されている ターゲット・ボードの ディジタルI/O, アナログI/O, PWMを 操作できる

関本 健太郎

図1 Firmata ライブラリの概要

Firmata プロトコル

Firmataは、コンピュータ(またはスマートフォン/ タブレットなど)上のソフトウェアからマイコンと通 信するためのプロトコルです.このプロトコルは任意 のマイコンのファームウェアに実装できます.

Firmataはコマンド・バイトが8ビット,データ・ バイトが7ビットというMIDIメッセージ・フォー マットに基づいています.Firmataのプロトコルを **表1**に示します.

Firmataメッセージ・フォーマットには、データ・ メッセージ拡張 (Data Messages Expansion, 0xE0, 0x90, 0xC0, 0xD0) とコントロール・メッセージ拡張 (Control Messages Expansion) があります.

● データ・メッセージ拡張のフォーマットの指 定方法

データ・メッセージ拡張のフォーマットは,第1バ イトの上位4ビットがコマンド,下位4ビットがピン 番号またはポート番号を指定します.データ・バイト が7ビットなので,8ビットのデータは,下位7ビッ トのデータをデータ部の第1バイトで,8ビット目の データをデータ部の第2バイトの最下位ビットに割り 当てます.例えば,

▶ (1) ホストからデバイスのポート2の値を 0x11001111に設定するコマンドを送信する場合 Firmataのプロトコルでは、0x92(下位4ビットが

Interface 2023年11月号

169

図2 Firmata USBディスクリプタ

ポート番号), 0x4F, 0x01となり, この3バイトをホ ストからデバイスに送信します.

▶ (2) ホストからデバイスのポート2の状態を受信す る場合

まず,ホストからディジタル・ポート・レポート・ コマンドを送信します. Firmataのプロトコルでは, 0xD2(下位4ビットがポート番号), 0x01(0:レポー ト無効化, 1:レポート有効化)となり, この2バイト をホストからデバイスに送信します. コマンドを受け 取ったデバイスは(1)で説明したフォーマットでポー ト2の8ビットの状態をホストに送信します. ホスト では, 0x92, 0x4F, 0x01を受け取ることになります.

● コントール・メッセージ拡張のフォーマット の指定方法

例えばピン5番をアナログ・ピンに設定する場合の
 コマンドは、0xF4(ピン・モード設定コマンド)、
 0x05(ピン番号)、0x02(アナログ・ピン・モード値)
 となります(表1).

● 拡張コマンド・セットの指定方法

拡張コマンド・セット(表2)は、Sysexベース (0xF0でSysexモードになった後)のサブコマンド (0x00 ~ 0x7F)として利用します。例えばホストから デバイスにファームウェア名とバージョンをリクエス トする場合には、拡張コマンド開始、REPORT_ FIRMWARE、拡張コマンド終了の手順(0xF0, 0x79,

Interface 2023年11月号

ピン・モード(INPUT/OUTPUT/ANALOG/PWM/SERVO/I2C/ONEWIRE/STEPPER/ENCODER/SERIAL/PULLUP)は0/1/2/3/4/6/7/8/9/10/11 に割り当てられている. 拡張コマンド・セットはSyexeベース(0xF0でSyexeモードになった後)のサブコマンド(0x00~0x7F)として利用する.

八桁	カノー	第0バイト		塩1 バイト	なのパノ1	
刀强	917	上位4ビット	下位4ビット	毎1八イド	543 4 / Y	
	アナログ I/O メッセージ	0xE0	ピン番号	LSB (ビット0~6)	MSB (ビット7~13)	
データ・メッセージ拡	ディジタルI/O メッセージ	0x90	ポート	LSB (ビット0~6)	MSB (ビット7~13)	
張のフォーマット	アナログ・ピン・レポート	0xC0	ピン番号	無効/有効(0/1)	n/a	
	ディジタル・ポート・レポート	0xD0	ポート	無効/有効(0/1)	n/a	
	Sysex 開始	0xF0		-	-	
	ピン・モード設定 (I/O)	0xF4		ピン番号 (0~127)	ピン・モード	
コントール・メッセー	ディジタル・ピン値設定	0xF5		ピン番号 (0~127)	ピン値 (0/1)	
ジ拡張のフォーマット	Sysex終了	0xF7				
	プロトコル/バージョン	0xF9		メジャー・バージョン	マイナ・バージョン	
	システム・リセット	0xFF		-	-	
拡張コマンド・セット	文字列	0x71		文字の下位7ビット	文字の上位1ビット… 文字の最後は0xF7	
	ファームウェア名/バージョン	0x	79	メジャー・バージョン	マイナ・バージョン	

表2 Firmata拡張コマンド・セット

拡張コマンド・セット	値	内容
EXTENDED_ID	0x00	値0x00は、次の2バイトが拡張IDを定義することを示します
RESERVED	$0x01 \sim 0x0F$	ID 0x01~0x0Fはユーザ定義のコマンド用に予約されています
ANALOG_MAPPING_QUERY	0x69	アナログからピン番号へのマッピングを依頼する
ANALOG_MAPPING_RESPONSE	0x6A	マッピング情報で返信
CAPABILITY_QUERY	0x6B	サポートされているモードと全てのピンの分解能を尋ねる
CAPABILITY_RESPONSE	0x6C	サポートされているモードと分解能で返信する
PIN_STATE_QUERY	0x6D	ピンの現在のモードと状態(値とは異なる)を要求する
PIN_STATE_RESPONSE	0x6E	ピンの現在のモードと状態(値とは異なる)で応答する
EXTENDED_ANALOG	0x6F	任意のピンへのアナログ書き込み (PWM, サーボなど)
STRING_DATA	0x71	1文字あたり14ビットの文字列メッセージ
REPORT_FIRMWARE	0x79	レポート名とファームウェアのバージョン
SAMPLING_INTERVAL	0x7A	アナログ入力がサンプリングされる間隔 (デフォルト =19ms)
SYSEX_NON_REALTIME	0x7E	MIDI非リアルタイム・メッセージ用に予約済み
SYSEX_REALTIME	0X7F	MIDIリアルタイム・メッセージ用に予約済み

表3 ホストからデバイスへのコマンド(ファームウェア名, バー ジョン)

番号	内容	値
0	拡張コマンド開始	0xF0
1	REPORT_FIRMWARE	0x79
2	拡張コマンド終了	0xF7

0xF7)をホストからデバイスに送信します(表3). コ マンドを受け取ったデバイスはホストに,表4の手順 でレポートを送信します.

ホストPC用 インターフェース・ライブラリ

Firmataには、ホストPCで動作するArduino向け

Interface 2023年11月号

表4 デバイスからホストへのレポート (ファームウェア名, バー ジョン)

番号	内容	値
0	拡張コマンド開始	0xF0
1	REPORT_FIRMWARE	0x79
2	メジャー・バージョン	$0 \sim 127$
3	マイナ・バージョン	$0 \sim 127$
4	ファームウェア名最初の文字(LSB)	??
5	ファームウェア名最初の文字(MSB)	??
6	ファームウェア名次の文字(LSB)	??
7	ファームウェア名次の文字(MSB)	??
:		??
N	拡張コマンド終了	0xF7

171

表5	Arduino	Firmata	向けのク	ワライブ	' ント	・ライブラ	ぅリ
----	---------	---------	------	------	-------------	-------	----

言 語	URL	言 語	URL	
Drogoning	https://github.com/firmata/processing		https://github.com/SolidSoils/Arduino	
riocessing	http://funnel.cc	.NET	http://www.acraigie.com/programming/	
	https://github.com/MrYsLab/pymata4		firmatavb/default.html	
	https://github.com/MrYsLab/pymata-	Flash/AS3	http://funnel.cc	
	express	1110511/ 1455	http://code.google.com/p/as3glue/	
Python	https://github.com/tino/pyFirmata	Pharo	https://github.com/pharo-iot/Firmata	
	https://github.com/lupeke/python- firmata	DIID	https://github.com/ThomasWeinert/ carica-firmata	
	https://github.com/firmata/pyduino	rnr	https://github.com/oasynnoum/phpmake_	
	https://github.com/ntruchsess/perl-		firmata	
Perl	firmata	Haskoll	http://hackage.haskell.org/package/	
	https://github.com/rcaputo/rx-firmata	паѕкен	hArduino	
	https://github.com/hardbap/firmata	:05	https://github.com/jacobrosenthal/	
Ruby	https://github.com/PlasticLizard/	103	iosfirmata	
Kuby	rufinol	Dart	https://github.com/nfrancois/firmata	
	http://funnel.cc		http://www.maxuino.org/	
	https://github.com/nakkaya/clodiuno	Max/MSP	https://github.com/NullMember/	
Clojure	https://github.com/peterschwarz/clj-		MaxFirmata	
	firmata	Elixir	https://github.com/kfatehi/firmata	
	https://github.com/firmata/firmata.js	Modelica	https://www.wolfram.com/system-modeler/	
	https://github.com/rwldrn/johnny-five	Wodenca	libraries/model-plug/	
Javascript	http://breakoutjs.com	Go	https://github.com/kraman/go-firmata	
	https://nodered.org/docs/faq/ interacting-with-arduino#firmata	vvvv	https://vvvv.org/blog/arduino-second- service	
	https://github.com/kurbatov/firmata4j	open	http://openframeworks.cc/documentation/	
Java	https://github.com/4ntoine/Firmata	Frameworks	communication/ofArduino/	
	https://github.com/reapzor/FiloFirmata	Rust	https://github.com/zankich/rust-firmata	
	· · · · · · · · · · · · · · · · · · ·	Pure Data	https://github.com/NullMember/PDFirmata	

のさまざまな言語に対応したクライアント・ライブラ リが公開されています (**表5**).

ビルド

● Arduino IDEのインストール

ソースファイルは、GitHubのリポジトリ(https:// github.com/firmata/arduino)で公開されて います. RP2040向けにはArduino IDEを利用すると 良いでしょう. Arudino IDEをホストPCにインストー ルします. Windows 10環境を想定します. Windows 10の場合には、Arduino IDEはマイクロソフト・スト

$\bigcirc \bigcirc$	Arduino IDE Image: Control of the second secon	
	開発者ツール	¢

図3 Microsoft Store から Arduino IDEのインストール

アで公開されています(図3).

● Mbed OS RP2040 Boardsの登録

Arduino IDEを起動し、「ツール」→「ボード」→「ボー ドマネージャ」でボードマネージャを開き、「rp2040」 で検索し、Arduino Mbed OS RP2040 Boardsの最新 版 (2022年5月時点で3.1.1)を登録します.

● Firmata ライブラリの登録

次に、「スケッチ」→「ライブラリをインクルード」 →「ライブラリを管理…」でライブラリ・マネージャ を開き、「firmata」を検索し、最新版 (2.5.7) を登録し ます. Arduino IDEにデフォルトでインストールされ ている場合には、この手順はスキップできます.

● RP2040向けの設定変更

2023年9月時点では、Firmataライブラリに RP2040向けの設定はデフォルトで含まれていません でした. ConfigurableFirmataのGitHubのリポジトリ⁽⁷⁾ には、RP2040向けの設定変更方法が記載されていま

Interface 2023年11月号

リスト1 RP2040向けのboard.hの変更点

// Raspberry Pi Pico			&& (p) != LED BUILTIN)
// https://datasheets.rasph	errypi.org/pico/	// From the data sheet I2C-0 de	efaults to GP 4 (SDA)
#elif defined(TARGET_RP2040	Pico-R3-A4-Pinout.pdf) defined(TARGET_RASPBE RRY_PI_PICO)	<pre>// & 5 (SCL) (physical pins 6 // However, v2.3.1 of mbed_rp20 // HOWMANY to 1 and uses the no</pre>	& 7) 040 defines WIRE_ on-default GPs 6 & 7:
#include <stdarg.h></stdarg.h>		//#define WIRE_HOWMANY (1) //#define PIN_WIRE_SDA //#define PIN_WIRE_SCL	(6u) (7u)
static inline void attachIn interruptNumber, void	terrupt(pin_size_t FuncPtr callback, int mode)	<pre>#define IS_PIN_I2C(p)</pre>	<pre>((p) == PIN_WIRE_SDA (p) == PIN_WIRE_SCL)</pre>
{		// SPI-0 defaults to GP 16 (RX	/ MISO), 17 (CSn),
attachInterrupt(interrup	tNumber, callback,	// 18 (SCK) & 19 (TX / MOSI) (1	physical pins 21, 22,
	(PinStatus) mode);	// 24, 25)	
}		#define IS_PIN_SPI(p) (p) == PIN SPI MOSI	((p) == PIN_SPI_SCK
#define TOTAL ANALOG PINS	4		(p) == PIN SPI SS)
#define TOTAL_PINS	30	// UART-0 defaults to GP 0 (TX)) & 1 (RX)
#define VERSION_BLINK_PIN	LED_BUILTIN	#define IS_PIN_SERIAL(p)	((p) == 0 (p) == 1
<pre>#define IS_PIN_DIGITAL(p)</pre>	(((p) >= 0 && (p) < 23) (p) == LED_BUILTIN)	(p) == 4 (p) == 5 (p) == 12 (p) == 13	(p) == 8 (p) == 9 (p) == 16 (p) == 17)
#define IS_PIN_ANALOG(p)	((p) >= 26 && (p) < 26 + TOTAL ANALOG PINS)	<pre>#define PIN_TO_DIGITAL(p) #define PIN TO ANALOG(p)</pre>	(p) ((p) - 26)
#define IS_PIN_PWM(p)	digitalPinHasPWM(p)	#define PIN_TO_PWM(p)	(p)
#define IS_PIN_SERVO(p)	(IS_PIN_DIGITAL(p)	#define PIN_TO_SERVO(p)	(p)

す. それに従って, board.h(C:\Users\ユーザ 名\Documents\Arduino\libraries\ Firmata)ファイルを変更します. 823行目あたりの "#else"の前に**リスト1**を追加します.

StandardFirmataアプリケーションのビルド

Firmataのファームウェアとして、Standard Firmataプログラムを利用します. Arduino IDEを起動し、 「ファイル」→「スケッチ例」→「Firmata」→ 「StandardFirmata」を開きます. StandardFirmataでは、 デフォルトでGPIOピンが0~15までしかサポートされて いません. そこでRP2040向けにcheckDigitalInputs 関数中に、GPIOピンの処理を追加します(**リスト2**).

Arduino IDEにおいて,「スケッチ」→「検証・コン パイル」および「マイコン・ボードに書き込む」で, Picoボードに書き込んでください.

PCからの操作

Windows

WindowsからのFirmataの機能を素早く確認する には、Microsoft Storeの "Windows Remote Arduino

リスト2	RP2040向けのStandardFirmata.ii	noの変更点
------	-----------------------------	--------

Experience"アプリケーションを利用できます. Arduino IDEと同様の手順でインストールします. 起動し,図4(a)の「Connection」メニューでConnection としてUSB, Baud rateとして57600を選択し,接続 されているシリアル・ポートを選択し,[Connect]ボ タンを押します.接続されてデフォルトでDigitalメ ニューが開きます.動作確認として,図4(b)にある PicoのLEDが接続されているPin 25(GP25)を「0v」の 欄をクリックしてみましょう.LEDが点灯するはずで す.

Linux

Ubuntu 22.04の環境上でPythonでFirmata機能に アクセスしてみます. ログインユーザのPython環境 にpyfirmataをインストールします.

pip3 install pyfirmata

ボードの定義ファイル(~/.local/lib/ python3.10/site-packages/pyfirmata/ boards.py)をPico用に変更します. ここでは, ディジタル・ピンのインデックスを14から30に変更 します(**リスト3**).

Picoをホストに接続します. /dev/ttyACM0と して検出されますので, デバイスを操作できるよう

Interface 2023年11月号

Windows Remo	ote Arduino Exp	erience			
Connection	Digital	Analog	PWM	About	
ហ					
Let's	conne	ect an	Ardui	no	
Connect a Standard to. USB a Arduino is	Connect an Arduino board to this device using the options below. StandardFirmata must be uploaded to the device you are connecting to. USB and Bluetooth connections must use the same baud rate the Arduino is configured with.				
For more Windows	instructions, OnDevices.co	refer to the <u>b</u>	eginner's tut	orial found on	
Connectio	on	Baud rate	•		
USB	~	57600	~		
Network :	settings				
IP or Ho	ost Name	Port			

(a) ConnectionとしてUSB, Baud rateとして 57600を選択する

図4 Windows環境でのFirmataデバイスの制御

に、ログイン・ユーザを dialout グループに追加しま す.

sudo usermod -a -G dialout \$USER

firmata_gpio.py(**リスト4**)は、PicoのLED が接続されているPin 25(GP25)を"H"に設定し、1 秒スリープし、"L"に設定し、1秒スリープし、終了 するプログラムです.

リスト3 ボードの定義ファイル(board.py)

BOARDS = { 'arduino': {
'digital': tuple(x for x in range(30)),
14->30
'analog': tuple(x for x in range(6)), 'pwm': (3, 5, 6, 9, 10, 11), 'use_ports': True,
'disabled': (0, 1)
}, 省略 }

(b) Pin 25の「0v」の欄をクリック

●参考文献●

(1) Firmata protocol.

https://github.com/firmata/protocol (2) firmata/ConfigurableFirmata.

https://github.com/firmata/Configurable
Firmata/blob/master/BoardSupport.md

せきもと・けんたろう

board.exit()

リスト4 PicoのLEDが接続されている25ピンを操作する firmata_gpio.py

import time import pyfirmata # start connection to Arduino # USB: /dev/ttyUSB0 or /dev/ttyACM0 board = pyfirmata.Arduino('/dev/ttyACM0') board.digital[25].write(1) # LED on time.sleep(1) # 1s delay board.digital[25].write(0) # LED off time.sleep(1) # 1s delay

exit

