ご購入はこちら

オープンソースCPU 「RISC-V」の研究

第10回 CPU 自作の醍醐味…My カスタム命令を追加する

@msyksphinz

\inst[4:2]	000	001	010	011	100	101	110	111
inst[6 : 5] \								(>32b)
00	LOAD	LOAD_FP	custom0	MISC_MEM	OP_IMM	AUIPC	OP_IMM_32	48b
01	STORE	STORE_FP	custom1	AMO	OP	LUI	OP_32	64b
10	MADD	MSUB	NMSUB	NMADD	OP_FP	reserved	custom2/rv128	48b
11	BRANCH	JALR	reserved	JAL	SYSTEM	reserved	custom3/rv128	>80b

図1 RISC-Vの命令フィールドにはカスタム命令として利用できるフィールドが幾つか定義されている custom0/custom1 は将来的な利用か独自拡張を想定している.custom2/custom3 は RV128 命令と共用

● 今回やること

RISC-VのRocket Coreを拡張する方法にはいろいろ あります.1つは命令を拡張してALUにいろいろ手を加 える方法です.もう1つは、アクセラレータを外部に接 続してそれに対するアクセスを実行するためのRoCC (Rocket Custom Coprocosser)というインターフェース を使う方法です.今回はRoCCインターフェースを使っ て、Rocket Coreのそばにアクセラレータを接続する方 法について解説します注1.そしてソフトウェアのみでプ ログラムを構築した場合と比べて、どれくらい高速化で きるか見てみましょう.

図2 RISC-VのRocket Chip実装でカスタム命令を実行するアク セラレータを追加可能な仕組みRoCC

Rocket Coreにカスタム命令を 追加できる仕組み「RoCC」

● カスタム命令フィールド

RoCCはRocket Coreに対してカスタムのアクセラ レータを接続するインターフェースです. RISC-Vの 命令フィールドを見てみると、4種類のカスタム命令 を追加することのできるフィールドが残されています (図1).4種類のうち、custom2、custom3はRV128 命令セットとかぶっていますが、custom0、custom1 命令は将来の拡張か、カスタム命令用に定義されてい るため、自由に使用できます.

● CPUコアと外部アクセラレータとのインター フェース

Rocket Chipは、カスタム・アクセラレータを追加 できる3種類のインターフェースを備えています. custom0, custom1, custom2命令を実行することで, このインターフェースを介してカスタム・アクセラ レータと通信できます.

Rocket Chipのインターフェースの概要を図2に示

注:本稿の内容は執筆時点のもので,随時更新されていく可能性があります.

注1:最新版のfpga-zynqリボジトリは2018年7月現在Rocket-Chipが正常にブートできなくなっています。筆者はfpgazynqのリビジョンf03982e,内包しているRocket Chipリ ボジトリはリビジョンf3299aeで実験を行っています。