1) R F2.txt
001 from a2a. server. agent_execution import AgentExecutor, RequestContext
002 from a2a. server.events import EventQueue
003 from a2a. server. tasks import TaskUpdater
004 from a2a.types import (InternalError, InvalidParamsError, Part, TaskState
005 TextPart, UnsupportedOperationError)
006 from a2a.utils import new_agent text message, new_task
007 from a2a.utils.errors import ServerError
008 from .agent import CurrencyAgent

009

010

8}; class CurrencyAgentExecutor (AgentExecutor) :

013 def __init__(self):

8}% self.agent = CurrencyAgent ()

016 async def execute(

017 self,

018 context: RequestContext,

019 event_queue: EventQueue,

020) —> None:

021

022 query = context. get_user_input ()

023 task = context. current_task

024 if not task:

025 task = new_task (context. message) # type: ignore
026 await event_queue. enqueue_event (task)

027 updater = TaskUpdater (event_queue, task.id, task.context_id)
028 async for item in self.agent. stream(query, task.context_ id):
029 is_task_complete = item[is_task_complete’]

82? require_user_input = item[require_user_input’]
032 if not is_task complete and not require_user_input:
033 await updater. update_status(

034 TaskState. working,

035 new_agent_text_message (

036 item[’ content’],

037 task. context_id,

038 task. id,

039),

040

041 elif require_user_input:

042 await updater.update_status (

043 TaskState. input_required,

044 new_agent_text_message (

045 item[' content’],

046 task. context_id,

047 task. id,

048),

049 final=True,

050)

051 break

052 else:

053 await updater.add_artifact(

054 [Part (root=TextPart (text=item[content’]))],
055 name="conversion_result’

056

057 await updater. complete ()

058 break

059

060

061 async def cancel (

062 self, context: RequestContext, event_queue: EventQueue

063) —> None:
064 raise ServerError (error=UnsupportedOperationError ())

