001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088

1) R k7. txt

import json
import zoneinfo
from datetime import datetime

if date_raw. lower () == “latest”:

return “latest”, None

# IRERR (STHE) ZBHRLTHXBABZHERIENIT (TS
tz = zoneinfo. Zonelnfo (self. timezone)

now = datetime. now (tz)

today_str = now. strftime ("%Y-%m-%d")

weekday = ["Mon”, “Tue”, “Wed”, “Thu”

“Fri”, “Sat”, "Sun"][now.wéekday()]

i :E|7_“)l«7[§§ THA] Z518&LTHESDHS function schema
tools =

]

“type”: “function”
“function”: {
“name”: “resolve_date_for_frankfurter”
“description”: (
“Choose a SINGLE calendar day for ”
“the Frankfurter API. ”
“Return it in ISO "YYYY-MM-DD'. Only return ' latest’ ”
“when the text explicitly means ”
“the most recent available rate or ”
“when the date truly cannot be determined. ”
“Prefer a concrete past calendar day when possible. ”
) “Honor the provided timezone and 'today .”
“parameters”: {
“type”: “object”
“properties”: {
“normalized_date”: {
“type”: "string”
“description”:
“The resolved date for Frankfurter ”
“in "YYYY-MM-DD' or ' latest .”

“confidence”: {
“type”: “number”
“description”:
“0.0-1.0 subjective confidence of the mapping”,
“minimum”: 0.0, “maximum”: 1.0

“policy applied”: {
“type”" “string”
“description”:
“A short note of the disambiguation rule ”
“you applied.”

}

“required”: [“normalized_date”]

},
J

# BELMETR+HDE T 3y MMIIT latest) B Z I
system = (

)

You are a precise date normalizer for currency queries. ¥n”
“Rules:¥n”

“1) Output exactly one calendar day in ' YYYY-MM-DD’' . ¥n”

“2) Only return ' latest’ when the user literally means ’latest’ ”
“or the date cannot be determined. ¥n”

“3) Prefer a concrete, most likely intended past date if text is ”
“relative (e.g., 'last Friday').¥n”

“4) Respect the timezone and 'today’ provided. ¥n”
“B) If the text is a month/quarter/range, pick the most plausible ”
“single representative business day ”
“(e.g., the last calendar day of that period; if weekend/holiday ”
“ambiguity, pick the nearest prior weekday).”

few_shot_examples = (

f”Today (timezone={self.timezone}) is {today_str} ({weekday}). ”
“Examples:¥n”

“— " last Friday' —> pick the Friday of the previous week ~
“in this timezone. ¥n”

“—72024/6/1" or 'June 1, 2024’ -> 2024-06-01. ¥n”
“-72024-06" -> choose 2024-06-30 (or nearest prior weekday ”
“if rule 5 applies).¥n”

“— "end of last month’ -> choose the last calendar day of ”
“the previous month. ¥n”

“— "quarter 2 of 2024 -> choose 2024-06-30 ”

“(or prior weekday if needed).¥n”

“— " latest’ -> latest. ¥n”

“Return via the function call ONLY.”



089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111

1) R k7. txt

)

user = (
“Normalize this free-form date text for Frankfurter.¥n”
f"Timezone: {self.timezone}¥n”
f“Today: [today_str} ({weekday})¥n”

) f"Text: {date_raw}”

messages = [
{"role”: “system”, “content”: system},
{"role”: “system”, “content”: few_shot_examples}
{“role”: “user”, “content”: user}

resp = self.client. chat. completions. create (
mode |=sel f. model|
messages=messages
temperature=0,
tools=tools,
tool_choice={"type”: “function”
“function”: {“name”: “resolve_date for_frankfurter”}},



