第4部

700円無線マイコンESP32で初体験!

[MicroPython]の 基本的な使い方

ご購入はこちら

西本 卓也

<pre>\$ cd. \$ mkdir esp. \$ wgetno-check-certificate https://dl.espressif. com/dl/xtensa-esp32-elf-linux64-1.22.0-61-gab8375a- 5.2.0.tar.gz. \$ cd esp.</pre>
<pre>\$ tar xfz/xtensa-esp32-elf-linux64-1.22.0-61- gab8375a-5.2.0.tar.gz</pre>
<pre>\$ git clonerecursive https://github.com/</pre>
<pre>micropython/micropython-lib.git \$ git clonerecursive https://github.com/ nishimotz/micropython-esp32.git </pre>
<pre>\$ git clonerecursive https://github.com/ orprospif/orm.idf git</pre>
<pre>\$ cd esp-idf \$ git checkout P20620620620620620620620620020000000000</pre>
\$ git submodule updateinitrecursive
\$ cd (本文参照)-
<pre>\$ export ESPIDF=~/esp/esp-idf \$ export IDF_PATH=~/esp/esp-idf \$ export PATH=\$PATH:\$HOME/esp/xtensa-esp32-elf/bind</pre>
<pre>\$ cd micropython-esp32 \$ make -C mpy-cross \$ cd ports/esp32 \$ make </pre>

図1 ソースコードの入手からビルドまでの手順 コマンドを入力した後,実行時に表示される文字などは省略している

MicroPython (BLE対応版)の ビルド

執筆時点では、ESP32版 MicroPython (micropython -esp32) へは BLE が実装されていません. そこで公式 のバイナリ (FirmwareforESP32boards)を使わず,筆 者が公開するソースコードからビルドします.

開発用 PC の準備

ESP32版MicroPythonのビルドは, Linuxまたは macOSで行う必要があります. 筆者は, Windows用 のVMwareで動かしているUbuntu Linux 17.04 (64 ビット)で作業しています.

作業に必要なパッケージを以下のコマンドでインス トールします.

\$ sudo apt-get install git wget make

図2 ESP32ボードと開発用PCの接続 ボードに設けられたMicro-USBコネクタをPCに接続す るとシリアル・ポートとして認識される.ポート番号や デバイス名は記録しておく

libncurses-dev flex bison gperf python2.7 python-serial picocom

● ソースコードを入手してビルド

ESP32版 MicroPython のソースコードは, GitHub から取得します.gitのsubmoduleという機能が 使われているため,GitHubのウェブ・サイトからアー カイブ・ファイルをダウンロードするのではなく,コ マンドラインでgit cloneを実行します.

手順の概要は以下の通りです.

- ①ESP32toolchainの入手
- ^②micropython-libリポジトリの入手
- ③micropython-esp32リポジトリの入手
- ④esp-idfリポジトリの入手,指定されたリビジョンのチェックアウト

⑤makeの実行

⑥make deployを実行しESP32ボードに書き込み
 具体的な手順を図1に示します.シェルはbashを
 使っています.

git checkoutでは、ハッシュ値を指定してい ます. ここで指定する値は~/esp/micropythonesp32/ports/esp32/Makefileに記述された ESPIDF SUPHASHをそのまま使用します.

● ESP32への書き込み

ESP32ボードと開発用PCを,図2のようにMicro-USBケーブルで接続します.給電と通信の両方が行 えるMicro-USBケーブルが必要です.