イントロダクション3 搬送/巡回監視/草刈り/木材運搬/ 建設現場での作業ロボットに

写真で見る LiDARの使いどころ

ご購入はこちら

松井 敦史

(a) 2D LiDARとしてUST-20LX(北陽電機) 搭載

(b) 2D LiDARとしてSE2L (IDEC) 搭載

写真1 搬送ロボット…2D LiDARを使って人や車両などの障害物を検知する

LiDAR (Light Detection and Ranging) はレーザを 用いて物体までの距離を測定するセンサです. 単純な 障害物検知だけでなく、マッピングなどさまざまな シーンで用いられています。本稿では、筆者の所属す る会社が自律移動ロボットを開発し、現場へ導入した 例を紹介します.

工場、倉庫での搬送ロボットでの活用

工場や倉庫など施設内で活用される自律移動型搬送 ロボット(写真1)は、建屋内での自己位置を正確に把 握するとともに、人や車両などの障害物を検知する必 要があります. 人や車両が検知できない場合は事故に つながるので、2D LiDARを利用し、安全・確実にロ ボットを停止させています.

2D LiDARの点群データをLiDAR SLAM (Simultaneous Localization and Mapping) 技術と一 緒に用いることで、正確にロボットを自動走行させる ことができます.

● 巡回監視ロボット

オフィスや工場などの広範囲なエリアを巡回するロ

ボット(写真2)は、日中だけでなく人の居ない夜間の 巡回監視を行う必要があります. 自律移動走行に LiDAR SLAM技術によって生成された3D点群地図 を用いることで、照明条件によらず正確な走行が可能 となります。また、カメラと違って照明条件を問わず 障害物を3Dで把握できるので、侵入者検知などの異 常検知にも役立ちます.

● 農業での自動草刈りロボット/林業での木材運 搬口ボット

農業分野では、草刈り機(写真3)の自動化に LiDARが活用されています. GPSとLiDAR SLAM技 術を組み合わせることで、広い敷地の草刈りだけでな く、果樹園や山地農園など、GPSが届かない場所でも 自己位置推定が可能となるため、人に代わって自動で 草を刈り取ることが可能になります.

林業では木材運搬車両であるフォワーダの自動化に LiDARが利用されています(図1). GPSが届かない ような森林内の複雑な地形でもLiDAR SLAM技術を 用いることで正確な自己位置推定が実現できていま す. また. 倒木や土砂崩れなどの障害物をLiDARで