第6章

LoRA, 量子化, QLoRA, Key-Value キャッシング

ローカル LLM を 「賢く, 小さく,高速に」 動かすワザ

川原田 将之

● ローカルLLMの課題「賢く、小さく、速く」を いかに実現させるかが問題

手元でLLMを動かすローカルLLMには、主に4つのメリットがあります.

- ・低レイテンシ(高速な応答) …クラウドとの通信 が不要なため、応答速度が格段に向上します。
- オフライン動作…インターネットがつながっていない環境でも、LLMを利用できます。
- プライバシ保護…自分や会社の重要なデータをクラウドに送信しないため、情報漏洩のリスクを低減できます.
- コスト削減…クラウド・サービスのAPI利用料を 節約できます。

ローカルLLMは上記のメリットがある一方で、クラウドと比べて計算能力やメモリ容量に制約があります。その制約の中で、LLMをいかにして賢く、速く動かすかが大きな課題です。そこで本稿では、この課題を解決するため、表1の3つの技術を解説します。

まずはLLMの基本的な仕組みを サッと見てみる

LLMが文章を理解したり生成したりする基本的な 仕組みを説明します。現在のLLMのほとんどは、ト ランスフォーマというアーキテクチャをベースにして います。

表1 本稿で扱うLLMを賢く、小さく、速くする技術

課題	使用する技術	技術の概要
賢く	LoRA による効率的な ファインチューニング	特定のタスクにLLMを特化さ せるための、パラメータ効率 が高い学習手法
小さく	量子化によるモデルの 軽量化	モデルのメモリ使用量を抑え, 限られたリソースでも動かせ るようにする
速く	Key-Value キャッシン グによる推論の高速化	LLMの文章生成(推論)処理 を効率化する

● Attention (アテンション) 機構

トランスフォーマの最大の特徴は、Attention (アテンション)機構です。一言でいうと、文章中の単語の関連性に重み付けをする仕組みです。例えば、「昔あるところに」という入力から次に続く単語「おじいさん」を予測する場合(図1)、アテンション機構は「ところ」や「に」といった単語が、次に来るであろう人物を表す単語と強い関連性を持つと判断し、それらの単語に高い重みを置きます。このように、文脈に応じて単語間の関連性の強弱を動的に学習することで、LLMは文脈を深く理解し、自然な文章を生成できます。

● LLMのアーキテクチャの特徴

トランスフォーマは元々、機械翻訳のために考案さ

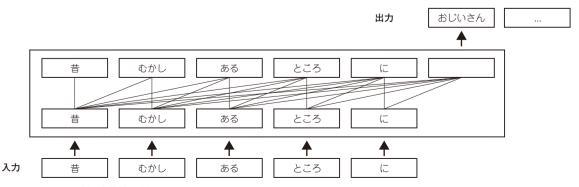


図1 アテンション(注意)機構の仕組み