- ①追加学習なし、②追加学習やRAGで補完、 ③従来手法と組み合わせたハイブリッド構成

LLM による異常検出の 3つのアプローチ

ご購入はこちら

氏森 充

大規模言語モデル (LLM) は、ログ解析やセキュリ ティ検出など、多様な異常検出タスクへの応用が注目 されています。既存のLLMの能力を最大限に引き出

し、システムの要求仕様(導入コスト、精度、リアル タイム性) に合わせるためには、適切なアプローチを 選択することが不可欠です。

表1 アプローチ①…追加学習を必要としない手法

手 法	概要	具体例・特徴
Zero-shot prompting	タスク定義だけを与え、LLMに直接、正常/異常を判断させる	例:「このログに異常があるか判断してください」。事 前データ不要で試験が容易
Few-shot prompting	正常/異常の例を数件提示し、それに倣って判定させる	少量の例示で学習効果を再現でき、安定性が向上
Chain of Thought (CoT)	判断手順を明示して段階的に思考させる	例:「平均→偏差→特異点→最終判断」というステップを指示. 推論の透明性が高い
自己反省型/評価付き プロンプト	モデル自身に複数案を生成させ、根拠を比較、自己評価 させる	誤判断の抑制や説明の一貫性向上に有効
テンプレート化+ 条件付きプロンプト	入力形式や出力ラベルを定型化して安定した回答を得る	異常/正常などの表記を固定し、結果の整合性を確保 する

表2 アプローチ①の各手法における利点と課題

手 法	主な利点	主な課題・注意点
Zero-shot prompting	データ準備コストが最も低い未知の異常にも柔軟に対応できる	・プロンプト設計の影響が大きく誤判定しやすい・再現性が低く出力のばらつきが大きい
Few-shot prompting	・少数例で安定性と精度を改善できる ・事前学習モデルの知識を活用可能	・例示の選び方によって結果が偏る・トークン数が増えやすくスケールしにくい
Chain of Thought (CoT)	・推論過程を明示でき説明性が高い・人間の理解と整合的な出力が得られる	・長文出力による遅延・コスト増の可能性・段階指示が複雑すぎると誤動作する
自己反省型/評価付きプロンプト	・誤判断の抑制と一貫性向上が期待できる	• 生成負荷が高くリアルタイム処理には不向き
テンプレート化+ 条件付きプロンプト	・形式が固定化され出力の安定性が高い ・システム連携に適する	・表現の柔軟性が低下し、未知のパターン検出には不向き

表3 アプローチ①の安定性を高めるための方法

課題	対応策	解説
プロンプト設計の感度・ 出力のばらつき	構造化プロンプト/テンプレート化,安定性評価(Prompt Stability), A/Bテスト	出力形式や語彙を固定化しセマンティック安定性の観点で 評価・改善を繰り返す
Few-shotの例示選定感度	クラスタリングによる代表例選定, 反事例 (ネガティブ例) 併用, 動的プロンプト適応	ログや時系列データをクラスタごとに代表例化し, 更新に 合わせてプロンプトを動的変更する
出力長・遅延	トークン数制限,段階出力,Early-stopping制御	要約+詳細回答の2段階生成で遅延を低減する
自己反省型プロンプトの 負荷	部分反省/限定反省, 反省回数制限, アンサンブ ル統合	比較回数を減らし、複数生成の統計的統合で安定性を確保 する
テンプレート化による柔 軟性低下	複数テンプレート保持、自由入力セクション併設	異常の多様性に対応できるようテンプレートを柔軟に切り 替え可能にする