
26 　2026年3月号

　CPUにより関数やローカル変数などの実現方法は
異なります．しかし，C言語のレベルでは同じ書き方
で問題ありません．これはC言語の抽象化能力のおか
げです．
　本章では，C言語がCPUの違いを抽象化するしく
みを説明します．具体的には，あるソースコードが異
なるCPUに対してどのようにコンパイルされるのか
を見てみます．
　また，本章以降では，具体的なレジスタ名や命令が
数多く登場しますが，事前に詳しく知っておく必要は
ありません．

CPUが実際に実行するコードは�
機械語
● C言語をコンパイルして機械語に変換

C言 語 がCPUの 違 い を 抽 象 化 す る 例 と し て，
リスト1（a）のプログラムを考えます．変数aに変数
bの値を足すだけの非常にシンプルなC言語プログラ
ムです．2つの変数はどちらもint型です．

通常，このプログラムを実行するには，コンパイル
を行って機械語にします．例えばx86-64アーキテク
チャではa += bに相当する部分がリスト1（b）のよ
うな機械語になります注1．
　機械語は単なる数値列注2であり，そのままでは理
解しにくいので，対応するアセンブリ言語と日本語で

の説明を示します．

● 機械語（アセンブリ言語コード）を読んでみる
機 械 語 の 構 造 を 簡 単 に 説 明 し ま す． 第1部

Appendix 2では，アセンブリ言語と機械語について，
命令やレジスタなども含めてもう少し踏み込んで解説
しています．
リスト1（b）のADD命令（2行目）に注目したとき，

機械語は01 45 fcの3バイトです．1バイト目はOP
コードと呼ばれるもので，命令の種類（ADD r/
m32, r32）を表します．
　2バイト目はModR/Mと呼ばれるもので，2つのオ
ペランドを指定します．ModR/M＝0x45を分解する
とMod＝1，RM＝5，REG＝0となります．これは
オペランドの1つが［RBP（ベース・ポインタ）＋
disp8］で，もう1つがEAXレジスタであることを示
します．［RBP＋disp8］はメモリを表す書き方で，
RBPレジスタにdisp8を足したアドレスで指し示され
るメモリを意味します．
　3バイト目はディスプレースメントと呼ばれるもの

リスト1　同じC言語プログラムでもCPUが違うと機械語（アセンブリ言語）が変わる

int add(int a, int b) {
 a += b;
 return a;
}

（a）C言語ソースコード

8b 45 f8 mov eax, DWORD PTR [rbp-0x8] ; b を eax にロード
01 45 fc add DWORD PTR [rbp-0x4], eax ; a に eax を足し込む

（b）x86-64アーキテクチャの機械語とアセンブリ言語

機械語 アセンブリ言語

b9400be9 ldr w9, [sp, #8] ; b を w9 にロード
b9400fe8 ldr w8, [sp, #12] ; a を w8 にロード
0b090108 add w8, w8, w9 ; w8 に w9 を足し込む
b9000fe8 str w8, [sp, #12] ; w8 を a にストア

（c）AArch64アーキテクチャの機械語とアセンブリ言語

機械語 アセンブリ言語

注1：GCCを使って，最適化を無効（-O0）でコンパイルしました．
注2：8bやf8が数字に見えないかもしれませんが，れっきとし

た16進数表記の数字です．ちなみに8b 45 f8の3バイト
を10進数で表すと139 69 248となります．

第1部

内田 公太

第2章

C言語がCPUの違いを
抽象化するしくみ

関数やローカル変数はCPUでどう実現されている？

ご購入はこちら

https://shop.cqpub.co.jp/hanbai/booklist/series/Interface/
https://interface.cqpub.co.jp/magazine/202603/

