
91　2026年3月号

　Armプロセッサなどで行う処理をアセンブリ言語
で書くことはあまり多くないでしょう．しかし，アセ
ンブリ言語で書かないとCPUが持っている一部の機
能は使えません．それらはOSやドライバのソフト
ウェアのように低レイヤで処理するには必要です．

現 在 のArmの 命 令 セ ッ ト に は，Thumb，
Thumb-2，A32，A64と複数あります．本稿では，
A32とA64について取り上げます．

コンパクトなA32命令セット

ラスベリー・パイなどで32ビット・モードと言わ
れていたもので，従来よく使われていた命令セットで
す．A32の命令長は32ビット固定で，CPU上のレジ
スタも32ビットです．

例えばオペランドの値を足すADD命令は図1のよ
うな構造になっています．ADD命令には複数の記述
方法があるのですが基本形は，
ADD {Rd}, <Rn>, <Rm>

と書きます．Rd，Rn，RmはCPUの持つレジスタを
指定する変数です．この命令は，{Rd}＝<Rn>+<Rm>
という計算を実行します．

　図2に，32ビット命令へのエンコーディングを示し
ます．ADD命令では，単純に加算を行うだけでなく
条件付きで加算したり，シフトした値を加算したりも
できます．

レジスタに32ビットのイミディエイト値（即値）を
ロードする場合を考えます．命令長が32ビットなの
で，普通に考えると32ビットの命令の中に即値が入
りきらず，1回の命令実行ではロードできません．

● 任意の値をロードする方法
▶方法1：16ビットずつロード

即値を，上位16ビットと下位16ビットに分けて
ロードする方法があります．MOVW/MOVTという命令
を使います．これをアセンブリ言語の書式で示すと
リスト1の①のようになります．0x12345678とい
う即値をロードする例をリスト1の②に示します．
▶方法2：リテラル・プールを使ってロード

いったんメモリ領域に即値を置いて，そのアドレス
のメモリから値を読み出す方法としてLDR命令が用
意されています（リスト2の①）．
　GNUアセンブラではこれをリスト2の②のように
書くこともできます．自動的にリテラル値を配置し
て，PC（プログラム・カウンタ）相対でのロード命令

031

ADD R1 R2 R3

32ビットの中に，使用する
オペレータやオペランドの
情報が入っている

図1　ArmアセンブラのADD命令の構造

0459101516202122232428293031

sop

RdRnimm6Rm1 0 1 1 shift00 00sf

足す値が入った
レジスタの番号

足す値が入った
レジスタの番号

6ビット即値 結果を入れる
レジスタの番号

図2　ADD命令の各ビットが持つ意味

リスト1　32ビットの即値を16ビットずつロードする

MOVW Rd, #imm16 ; 下位16ビットをセット
MOVT Rd, #imm16 ; 上位16ビットをセット

MOVW Rd, #0x5678
MOVT Rd, #0x1234

①

②

Armプロセッサの
即値ロード命令の使い方

方法ごとのロード時間差をプログラムで調査

永井 健一

第4章

第2部

ご購入はこちら

https://shop.cqpub.co.jp/hanbai/booklist/series/Interface/
https://interface.cqpub.co.jp/magazine/202603/

