
109　2026年3月号

　現代のCPUではマルチコアが当たり前です．PC向
けのCPUはもちろんシングルボード・コンピュータ
用CPUやマイコンに至るまで複数のコアを搭載する
のが普通になっています．
　それらのハードウェアの性能を引き出すためには，
マルチスレッド・プログラミングを行う必要がありま
す．単にマルチスレッドにしただけで性能が上がる，
と考えがちですが，性能を引き出すにはCPUのキャッ
シュ・システムに対する理解が必要不可欠です．
　本稿では，キャッシュ・システムの仕組みを知るこ
とで，C++のコードの振る舞いについて説明します．
主にPCに使用されるCPUをターゲットにしています
が，シングルボード・コンピュータやスマートフォン
などのCPUも基本的な仕組みは同じです．

マルチスレッドでのCPUの
不思議なふるまい

　複数のスレッドで独立して何かしらの処理を行う最
も簡単な例としてリスト1のようなC＋＋で書かれた
プログラムを考えてみます．本稿のプログラムは次の
URLでも参照できます．
https://github.com/shuichitakano/
false_sharing_sample

　配列中の一部の値をインクリメントするだけの簡単
な処理を，2つのスレッドで行います．1つ目のスレッ
ドでは配列の最初の要素を，2つ目のスレッドでは引
数で指定した要素を処理します．
　このプログラムの引数を変えながら実行すると興味
深い結果が得られます．Ryzen 7 2700X（AMD）を搭
載する筆者のPCでは，引数1で1092ms，引数32のと
きに389msという結果が得られました．完全に同一
の処理を行っているにもかかわらず，なぜこれほどの
差が出るのでしょうか．
　この現象を理解するにはCPUが持つキャッシュ・
メモリの仕組みを理解する必要があります．

プログラムの局所性と
キャッシュの相性

　現代の多くのCPUにはメモリ・アクセスを高速化
するためにキャッシュ機構が組み込まれています．
キャッシュ・メモリの仕組みを理解するために，メモ
リとプログラムの特性を簡単に説明します．

● 主として使われる2種類のRAM
メモリには，大きくSRAM（Static RAM）とDRAM

（Dynamic RAM）の2種類があります．
▶ランダム・アクセスにも強いSRAM

SRAMは1ビットを6トランジスタのフリップフ
ロップで保持します．ランダム・アクセスが非常に高
速で扱いやすいのですが，構成するために必要な回路
面積が大きいため高価です．
▶ランダム・アクセスの苦手なDRAM

1ビットを1トランジスタ＋1キャパシタで保持し
ます．セルが極めて小さいため高密度に実装でき，低
コストです．しかし，セル電荷が自然に漏れるため定
期的なリフレッシュ（記憶保持動作）が必須です．

ランダム・アクセスのレイテンシはSRAMより非
常に大きいです．DRAMはセルが2次元配列で並び，
アドレスを行（Row）と列（Column）に分けて扱いま

リスト1　2つのスレッドで独立した配列要素を更新するサンプル
（fs.cpp）

int main(int, char **v) {
 using namespace std::chrono;
 using namespace std::chrono_literals;
 alignas(128) std::array<volatile int, 64> a{};
 int idx = std::stoi(v[1]) & 63;
 auto w = [&](int i) {
 for (auto k = 200'000'000ULL; k > 0; --k)

++a[i];
 };
 auto s = steady_clock::now();
 std::thread t0(w, 0), t1(w, idx);
 t0.join(); t1.join();
 std::cout << (steady_clock::now() - s) /

1ms << "ms " << a[0] << ' ' << a[idx] << '\n';
}

マルチスレッド環境における
CPUキャッシュの仕組み

コア間で整合性を取る方法から
その代償フォルス・シェアリングまで

高野 修一

第1章

低レイヤ・プログラミング…最適化編第3部

ご購入はこちら

https://shop.cqpub.co.jp/hanbai/booklist/series/Interface/
https://interface.cqpub.co.jp/magazine/202603/

