
117　2026年3月号

● プログラムを改善してキャッシュの効果を確認
本稿ではC＋＋のプログラムの処理時間を実測する

ことで，キャッシュの効果を確認します．基本的な
キャッシュの効果に集中するため，マルチスレッド・
プログラミングは扱わず，シングル・スレッドにおけ
るCPUの振る舞いのみを対象とします．
　画像処理（ガウシアン・フィルタ）を題材とします．
筆者は，MacBook Pro（2021，M1 Max，アップル）
を用いて実験しましたが，キャッシュを搭載するどの
CPUに関しても同じ考え方が通用するはずです．

最適化で検討すること

　プログラムを最適化しようとしたとき，どのような
ことを気にするべきでしょうか．最初に行うべきは，
問題をより少ない計算量で解ける方法に置き換え，根
本的に処理全体を軽くするようなアルゴリズム・レベ
ルでの改善です．

同じアルゴリズムでもプログラムの書き方は複数あ
り，実行効率の良い方法を選びます．実装の効率化で
は，無駄な処理を省いたり，データの配置を工夫した
りして，最小限の命令で実行できるように組み替える
のが基本です．しかし，それだけではうまくいかない
こともあります．

● キャッシュを意識した最適化を行う
近年のコンピュータ・システムではメモリに関する

ボトルネックが大きく，それを隠
いん

蔽
ぺい

するためのキャッ
シュ・システムがCPUに組み込まれています．キャッ
シュの性質を意識して組んだプログラムと，そうでな
いプログラムとの間では，数倍の性能差が出ることも
珍しくありません．

● 最適化に集中するため画像はシンプルに扱う
▶画像データの定義

本稿では本質的な問題に集中するため，画像の各画
素をfloatのモノクロ値とします．値の範囲は0 ～ 1と
し，リスト1に示すような構造体で管理します．

　画像は2次元のデータですが，メモリ上では行をつ
なげて1次元の連続した領域として保持するのが一般
的です．この構造体では，pixに全ての画素値を1列
に並べて格納し，座標（x，y）の画素には，pix[y *
stride + x]としてアクセスします．
　ここでwではなくstrideという別の変数を使っ
ています．これにはx方向の画素数に特定の数を足し
た数値を格納してあります．末尾に余分な領域を追加
してでも，画像の幅とは独立してメモリ上での1行の
幅を指定できると便利なことがあるためです．
▶端数処理は簡易な方法で対処

この手の画像処理では画像の範囲を参照するため，
端付近での境界処理が必要です．本稿で扱うプログラ
ムは，入力画像の周囲に読み込み範囲分の余白をあら
かじめ設けておくことで，その問題を無視できるよう
にします（図1）．

ガウシアン・フィルタの一般的な実装

● ガウシアン・フィルタの定義
比較的シンプルで実用的な画像処理の一例としてガ

ウシアン・フィルタを取り上げます．ガウシアン・
フィルタは，入力画像I［x，y］に対して，標準偏差σ
に関する2次元のガウス関数，

G（x，y）＝ 1
2πσ2 exp − x2＋y2

2σ2 （1）

リスト1　本稿で使う画像を定義したクラス

struct Image
{
 size_t w = 0, h = 0, stride = 0;
 std::vector<float, AlignedAllocator<float,

64>> pix;
 // AlignedAllocator は別途定義されるアライン付き Allocator

 void alloc(size_t W, size_t H, size_t Stride = 0)
 {
 w = W; h = H; stride = Stride ? Stride : w;
 pix.assign(stride * h, 0.0f);
 }
};

キャッシュを意識した
コード最適化テクニック

画像フィルタの処理が2.5～5倍に…
高速化の一部始終を紹介

高野 修一

第2章

第3部

ご購入はこちら

https://shop.cqpub.co.jp/hanbai/booklist/series/Interface/
https://interface.cqpub.co.jp/magazine/202603/

