基本的な距離測定から 裏面诱視&イメージングまで

超音波による 出&内部

井原 郁夫

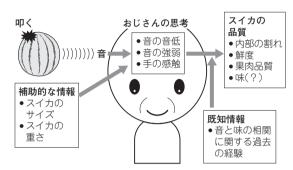


図1 意外と当たる? 八百屋のおじさんのスイカの品定め

● 位置や内部構造を測るにはまず超音波エコー

20kHz以上の周波数の音波を超音波といいます。 超音波は直進性が強く、対象物に照射したときの反 射や透過のようすから、次の特性を定量的に測れま す.

- 位置 • 形状
- 内部構造
- 厚み
- 動き
- 物理特性

超音波のパルスエコー法は、非接触や非破壊で対象 の物理特性を測る代表的なセンシング手法です.

ここでは、 定番パルスエコー法を使って、 基礎的な 実験を行いながら、超音波の特性やセンシング原理を 解説します. 物体の検出や位置の測定, 内部の探査, イメージング材料評価を行う際の基礎となります.

信頼性が大切な本格的な測定には品質が保証された 測定機器やセンサが使われます. ここでの実験でも信 頼性のあるデータを取得するために、比較的高品質な 機器やセンサを使っています. 安価な超音波センサや 回路を活用すれば同様の実験を行えます.

超音波で位置や構造がわかる基本原理

超音波による非破壊センシングは、「スイカの品定 め」に例えられます. スイカをポンポンとたたくこと で、スイカの鮮度や味の善しあしを予測する方法です. ここで注目すべきは、スイカを切らずに中のようす

を予測しているということです. これは一見. 非科学

(a) 材料表面と平行な振動を加える(縦波発生)

(b) 材料表面に垂直な振動を加える(横波発生)

図2 物体内に超音波(弾性波)を生じさせる方法

弾性体の一部に力(軽い衝撃力)を加えると何らかの振動が物質中を伝わ る. 力の加え方(叩き方)を工夫すると縦波または横波の超音波振動が弾 性体内に伝わる

的なようですが、実際に、スイカを手のひら全体でパ ンパンとたたいたりしたときの感触や音から、スイカ の内部に割れや空洞がないかなどをある程度判断でき るようです.

これを少し科学的に表現すると、スイカのたたき方 を少しずつ変えたときの感触や音の変化(測定値)を 指標として、過去の経験と勘(既知情報)を踏まえて、 スイカの品質を判定している(特性評価)ということ になります(図1). このような「音によるセンシング」 も捨てたものではありません.

● センシングの原理

超音波をセンシングに用いるには、まず測定対象に 超音波を導入し、それを伝搬させる必要があります. そのためには、その対象物のどこか一部を超音波と同 じ周波数で振動させてやればいいわけです. そうする ことで、超音波振動が測定対象に伝わります(図2). ただし、現実にはこの図のようなハンマーでたたくわ けにはいかないので、 適当な振動子を用いて所望の超 音波を発生させます.