ist6. txt

app/agent. py

import os

import json

from collections. abc import AsyncGenerator
from typing import Any, Optional

import httpx

from openai import OpenAl

from pydantic import BaseModel

—— 5VERAPIL: Frankfurter —————————
def get_exchange rate(
currency_from: str = “USD”
currency_to: str = "EUR”
currency_date: str = “latest”

“““Frankfurter APl H>AHEL— FZEIRE”

try:

resp = httpx. get(
f”https://api. frankfurter. app/{currency date}”
params={"from”: currency_from, “to”: currency_to}

) timeout=10. 0,

resp. raise_for_status ()

data = resp. json()

if “rates” not in data:
return {“error”: “Invalid API response format.”}

return data

except httpx. HTTPError as e:
return {"error”: f”API request failed: {e}”}

except ValueError:
return {"error”: “Invalid JSON response from API.”}

#t —— BEOF-HOE (REHE) ————
class ResponseFormat (BaseModel) :
status: str = “input_required”
message: str = 77

class GurrencyAgent:
CurrencyAgent

SYSTEM_INSTRUCTION = (
“You are a specialized assistant for currency conversions. ”

“Only help with currency exchange rate questions. ”
“Always extract parameters via the provided tools.”

SUPPORTED_CONTENT_TYPES = [“text”, “text/plain”]

def __init_ (self):
self.client = OpenAl(
api_key=os. getenv ("API_KEY”, “EMPTY"),
base_url=0s. getenv ("TOOL_LLM_URL"”, None),

)

self.model = os.getenv("TOOL_LLM_NAME”, “gpt-4o-mini”)
self. timezone = os. getenv ("A2A_TIMEZONE”, “Asia/Tokyo™)
self. context_id2query = {}

#
ﬁ LLM 1: /XS A =44

def _extract_params(self, query: str):
tools = [

“type”: “function”
“function”:
“name”: “extract_currency_query”
“description”:
“Extract currency parameters from user input.¥n”
“— currency_from: 1S0-4217 3-letter uppercase ”
“(e.g., USD)¥n”
“— currency_to: I1S0-4217 3-letter uppercase ”
“(e.g., EUR)¥n”
“— currency_date_raw: free-form date text or ”
“" latest’ ¥n”
) “If a field is missing, return an empty string.”
“parameters”: {
“type”: “object”.
“properties”: {
“currency_from”: {“type”: “string”}
“currency_to”: {“type”: “string”}
“currency_date_raw”:
“Sype”: "string”
“description”:
“Free-form date expression or ' latest’.”

1

| ist6. txt
| ,

“required”:
[“currency_from”, “currency_to”, “currency_date_raw”],

]

messages = [
{"role”: “system”, “content”: self.SYSTEM_INSTRUCTION}
{"role”: “user”, “content”: query.strip(},

resp = self.client. chat. completions. create(
mode |=se | f. mode|
messages=messages
temperature=0,
tools=tools,
tool _choice={"type”: “function”
“function”: {“name”: “extract_currency_query”}},

)

if not resp.choices:
return None, None, None, “No response from LLM.”

msg = resp. choices[0]. message
if not msg.tool calls:
return None, None, None, “LLM did not call the extraction tool.”

args_raw = msg. tool_cal Is[0]. function. arguments
try:
args = (
json. loads (args_raw)
if isinstance (args_raw, str) else (args_raw or {})

except Exception:
args = {}

c_from = (args. get (“currency_from”™) or “”).strip().upper () or None
c_to = (args. get(“currency_to”) or “”).strip().upper () or None
date_raw = (args. get ("currency_date_raw”) or “”).strip()

if not date_raw:

date_raw = “latest”

return ¢_from, c¢_to, date_raw, None

i
ﬁ LLM 2: B BEAREEE — Frankfurteriz=X

def ﬂggrmalize_date(self, date_raw: str) -> tuple[str, Optional [str]]:

ETIVICEBRAEEB % Frankfurter APl FAOE—BFA~EHRILEE 5,
- AR ' latest’ — ZOFEFRT ~
- ZS5THENE YYY-W-DD' ZBTET (5 LTEFHELEEDH ' latest’)

import json
import zoneinfo
from datetime import datetime

if date_raw. lower) == “latest”:
return “latest”, None

IRERR (STHE) ZHRLTHXBRZHBRIEDLIT TS

tz = zoneinfo. Zonelnfo(self. timezone)

now = datetime. now (tz)

today_str = now. strftime ("%Y-%m—%d")

weekday = [“Mon”, “Tue”, “Wed”, “Thu
“Fri”, “Sat”, “Sun”][now.weekday ()]

=E|7‘-“)l/7[b“ TH] %518& LTHESHS function schema
tools =

r”

“type”: “function”
“function”: {
“name”: “resolve_date_for_frankfurter”
“description”: (
“Choose a SINGLE calendar day for ”
“the Frankfurter API. ”
“Return it in ISO 'YYYY-MM-DD'. Only return ' latest’ ”
“when the text explicitly means ”
“the most recent available rate or ”
“when the date truly cannot be determined. ”
“Prefer a concrete past calendar day when possible. ”
) “Honor the provided timezone and 'today .~
“parameters”: {
“type”: “object”

ist6. txt
“properties”: {
“normalized_date”: {
“type”: “string”
“description”:
“The resolved date for Frankfurter ”
“in "YYYY-MM-DD' or ' latest’.”

“confidence”: {
“type”: “number”
“description”:
“0.0-1.0 subjective confidence of the mapping”
“minimum”: 0.0, “maximum”: 1.0

“policy applied”: {
“type”" “string”
“description”:
“A short note of the disambiguation rule ”
“you applied.”

“required”: [“normalized_date”]

]

#SRULMETR+HDE T 3y MMIIT latest) B Z

system = (
“You are a precise date normalizer for currency queries. ¥n”
“Rules:¥n”
“1) Output exactly one calendar day in 'YYYY-MM-DD’' . ¥n”
“2) Only return 'latest’ when the user literally means ' latest’ ”
“or the date cannot be determined. ¥n”
“3) Prefer a concrete, most likely intended past date if text is ”
“relative (e.g., 'last Friday).¥n"
“4) Respect the timezone and 'today’ provided. ¥n”
“B) If the text is a month/quarter/range, pick the most plausible ”
“single representative business day ”
“(e.g., the last calendar day of that period; if weekend/holiday ”
“ambiguity, pick the nearest prior weekday).”

)

few_shot_examples = (
f”Today (timezone={self.timezone}) is {today_str} ({weekday}). ”
“Examples:¥n”
“— " last Friday’ -> pick the Friday of the previous week ”
“in this timezone. ¥n”
“—72024/6/1" or 'June 1, 2024’ -> 2024-06-01. ¥n”
“-72024-06" -> choose 2024-06-30 (or nearest prior weekday ”
“if rule 5 applies).¥n”
“— "end of last month’ -> choose the last calendar day of ”
“the previous month. ¥n”
“— "quarter 2 of 2024 -> choose 2024-06-30 ”
“(or prior weekday if needed).¥n”
“— " latest’ -> latest. ¥n”
“Return via the function call ONLY.”

)

user = (
“Normalize this free-form date text for Frankfurter.¥n”
f”Timezone: {self.timezone}¥n”
f“Today: [today_str} ({weekday})¥n”

) f"Text: {date_raw}”

messages = [
{"role”: “system”, “content”: system},
{“role”: “system”, “content”: few_shot_examples}
{“role”: “user”, “content”: user}

resp = self.client. chat. completions. create (
mode |=se | f. model
messages=messages
temperature=0,
tools=tools,
tool_choice={"type”: “function”
“function”: {"name”: “resolve_date for_frankfurter”}}

)

if not resp.choices or not resp.choices[0]. message. tool_calls:

t —EIEXBLEFLSDT, @dll) >4 (latest [EIEI/L—ILBATR)

messages. insert (1, {“role”: “system”,
“content”:
“Do NOT default to ’latest’ ~
“unless strictly required. ”})

resp = self.client. chat. completions. create(

mode |=se| f. mode|

ist6. txt
messages=messages

temperature=0,
tools=tools,
tool choice={"type”: “function”
“function”:
{"name”: “resolve_date for_frankfurter”}},

)

if not resp.choices or not resp.choices[0].message. tool _calls:

return “latest”, “LLM could not normalize the date; ”
“using ' latest’.”

args_raw = resp. choices[0]. message. tool _cal Is[0]. function. arguments
try:

args = json. loads(args_raw) ¥

if isinstance(args_raw, str) else (args_raw or {})
except Exception:

return “latest”, “LLM returned invalid arguments; using ' latest’ .”

iso = (args. get ("normalized_date”) or “”).strip()
if not iso:

return “latest”, “LLM did not provide a normalized date; ”
“using ' latest’.”

BULKRENYT—3> (YYYY-MM-DD or ' latest’)

if iso. lower) == "latest”:
t 2—HA ' latest’ EESTHLDIZ latest ZRLIE=FE. 5 —ERLTARFIMNICEAXRBERD S
if date_raw. lower () != “latest”:

messages. insert (1, {“role”: “system”,
“content”: “User did NOT say ' latest’. ”
“Choose a concrete date.”})

resp2 = self.client. chat. completions. create(
mode |=sel|f. model

messages=messages
temperature=0,
tools=tools,
tool _choice={"type”: “function”
“function”:
{"name”: “resolve_date for_frankfurter”}},

if resp2.choices and resp2.choices[0]. message. tool calls:
args2_raw = (

resp2. choices[0].
message. tool_cal Is[0].
function. arguments

try:
args?2 = (
json. loads (args2_raw)
if isinstance(args2_raw, str)
else (args2 raw or {})

iso2 = (args2. get ("normalized_date”) or “”).strip()
if iso2 and iso2. lower () !'= “latest”:
return iso2, None
except Exception:
pass
t ES5SLTHLERKRBIZTELRLGS latest
return “latest”, None

'YYYY-MM-DD' Dz ERR
import re as _re
if not _re.match(r” "¥d{4}-¥d{2}-¥d{2}$", iso):
return “latest”, “LLM returned a non-1SO date; using ' latest’.”

return iso, None

#
ﬁ ARY—VITRE
a

sync def stream(self, query_in: str,

context_id: str) -> AsyncGenerator[dict[str, Any], None]:
o7 —X
yield {

“is_task _complete”: False,

“require_user_input”: False,

“content”: "ANZEMHITLTLVET ",

NGO TER NOHE
if context_id not in self.context_id2query:

self. context_id2query[context_id] = "
self.context_id2query[context_id] += query_in + “"¥n”
query = self.context_id2query[context_id]

c_from, c_to, date_raw, parse_err = self. _extract_params (query)
if parse_err:

yield {
“is_task _complete”: False,

[ist6. txt
“require_user_input”: True,
“content”: f'ANMEITICKBELLELT: {parse_err}¥n”
“45]: “USD EUR™ ~
“/ “usd jpy 2024-06-01" "~ .
| "/ K RILEIL—OIC SBEOERE T,

return

missing = []

if not ¢c_from:

~ missing. append "BE (£, IXFa—F) ")
if not ¢_to:

missing. append "BE (Z#k, 3XFa—FK))
if missing:
yield {

“is_task_complete”: False,

“require_user_input”: True,

“content”: (‘
"ABL—FERERTAEHIZROEBERNPIBETT
f7{" & '.join(missing)}. ¥n”

“f51: “USD EUR™ 4> “usd jpy EBDOERE”

}

return

if c_from == c¢_to:
yield {
“is_task_complete”: True,
“require_user_input”: False,
“content”: f“{c_from} & {c_to} [EE—BETY., ABL—FIEIZ 1.0 TT, 7,

return

#_EHTIIHE'H: (ETILER)
yie
“is_task_complete”: False,
“require_user_input”: False,
“content”: f"H{FZEMIRML TWET - (8%E: ([date_raw or 'latest’}) ”,

date_norm, date_warn = self._normalize_date(date_raw or “latest”)

L— FEF
yield {
“is_task_complete”: False,

“require_user_input”: False,
} “content”: f"ABL— FZEEH - ({c_from} — {c_to}, Bft: {date_norm}) ”,

data = get_exchange_rate(c_from, c_to, date_norm)

B

yield {
“is_task _complete”: False,
“require_user_input”: False,
“content”: "#EREEMLTULET -7,

if “error” in data:
msg = T"ERIFIZREX L FE L1- : {data[error 1}¥n”
if date_warn:
msg += T #E: {date_warn}¥n” -
N%T{EEZ—F(MZMDHW &L MELRLBASECHNEZEEELTHEETLTLESL, 7
yie
“is_task_complete”: False,
“require_user_input”: True,
“content”: msg,

return

rate = data. get ("rates”, {}).get(c_to)
if rate is None:
yield {
“is_task _complete”: False,
“require_user_input”: True, .
“content”: "EBEMDBEEI— KAFREMN., L—FHAREFTEEHEATLE, ¥n”
| “f51: "USD EUR 2024-06-01" 4> "USD EUR last Friday , ”

return

date_used = data. get ("date”, date_norm)
inv = 1.0 / rate if rate else None

lines = [
" [A&L—F] {c_from} — {c_to}”,
f’- B{t: {date_used}”,
- 1 {c_from} = {rate:.6f} {c_to}”,

[ist6. txt
if inv:
lines. append (f"-= 1 {c_to} = {inv:.6f} {c_from}”)
if date_warn:
| ines. append (f"¥n;¥: {date_warn}”)

yield {
“is_task_complete”: True,
“require_user_input”: False,
“content”: “¥n”. join(lines),

