
list6.txt
app/agent.py
import os
import json
from collections.abc import AsyncGenerator
from typing import Any, Optional
import httpx
from openai import OpenAI
from pydantic import BaseModel

--- 外部API: Frankfurter -------------
def get_exchange_rate(
 currency_from: str = "USD",
 currency_to: str = "EUR",
 currency_date: str = "latest",
):
 """Frankfurter API から為替レートを取得"""
 try:
 resp = httpx.get(
 f"https://api.frankfurter.app/{currency_date}",
 params={"from": currency_from, "to": currency_to},
 timeout=10.0,
)
 resp.raise_for_status()
 data = resp.json()
 if "rates" not in data:
 return {"error": "Invalid API response format."}
 return data
 except httpx.HTTPError as e:
 return {"error": f"API request failed: {e}"}
 except ValueError:
 return {"error": "Invalid JSON response from API."}

--- 互換のための型（内部用） ----------
class ResponseFormat(BaseModel):
 status: str = "input_required"
 message: str = ""

class CurrencyAgent:
 """CurrencyAgent """

 SYSTEM_INSTRUCTION = (
 "You are a specialized assistant for currency conversions. "
 "Only help with currency exchange rate questions. "
 "Always extract parameters via the provided tools."
)

 SUPPORTED_CONTENT_TYPES = ["text", "text/plain"]

 def __init__(self):
 self.client = OpenAI(
 api_key=os.getenv("API_KEY", "EMPTY"),
 base_url=os.getenv("TOOL_LLM_URL", None),
)
 self.model = os.getenv("TOOL_LLM_NAME", "gpt-4o-mini")
 self.timezone = os.getenv("A2A_TIMEZONE", "Asia/Tokyo")
 self.context_id2query = {}

 # =========================
 # LLM 1: パラメータ抽出
 # =========================
 def _extract_params(self, query: str):
 tools = [
 {
 "type": "function",
 "function": {
 "name": "extract_currency_query",
 "description": (
 "Extract currency parameters from user input.\n"
 "- currency_from: ISO-4217 3-letter uppercase "
 "(e.g., USD)\n"
 "- currency_to: ISO-4217 3-letter uppercase "
 "(e.g., EUR)\n"
 "- currency_date_raw: free-form date text or "
 "'latest'\n"
 "If a field is missing, return an empty string."
),
 "parameters": {
 "type": "object",
 "properties": {
 "currency_from": {"type": "string"},
 "currency_to": {"type": "string"},
 "currency_date_raw": {
 "type": "string",
 "description":
 "Free-form date expression or 'latest'."

1

list6.txt
 },
 },
 "required":
 ["currency_from", "currency_to", "currency_date_raw"],
 },
 },
 },
]

 messages = [
 {"role": "system", "content": self.SYSTEM_INSTRUCTION},
 {"role": "user", "content": query.strip()},
]

 resp = self.client.chat.completions.create(
 model=self.model,
 messages=messages,
 temperature=0,
 tools=tools,
 tool_choice={"type": "function",
 "function": {"name": "extract_currency_query"}},
)

 if not resp.choices:
 return None, None, None, "No response from LLM."

 msg = resp.choices[0].message
 if not msg.tool_calls:
 return None, None, None, "LLM did not call the extraction tool."

 args_raw = msg.tool_calls[0].function.arguments
 try:
 args = (
 json.loads(args_raw)
 if isinstance(args_raw, str) else (args_raw or {})
)
 except Exception:
 args = {}

 c_from = (args.get("currency_from") or "").strip().upper() or None
 c_to = (args.get("currency_to") or "").strip().upper() or None
 date_raw = (args.get("currency_date_raw") or "").strip()
 if not date_raw:
 date_raw = "latest"

 return c_from, c_to, date_raw, None

 # =====================================
 # LLM 2: 日付の自然言語 → Frankfurter形式
 # =====================================
 def _normalize_date(self, date_raw: str) -> tuple[str, Optional[str]]:
 """
 モデルに自然言語日付を Frankfurter API 用の単一日付へ正規化させる。
 - 入力が 'latest' → そのまま返す
 - そうでなければ、'YYYY-MM-DD' を必ず返す（どうしても不確実なときのみ 'latest'）
 """
 import json
 import zoneinfo
 from datetime import datetime

 if date_raw.lower() == "latest":
 return "latest", None

 # 現在日時（JSTなど）を明示して相対日時を解釈させやすくする
 tz = zoneinfo.ZoneInfo(self.timezone)
 now = datetime.now(tz)
 today_str = now.strftime("%Y-%m-%d")
 weekday = ["Mon", "Tue", "Wed", "Thu",
 "Fri", "Sat", "Sun"][now.weekday()]

 # モデルが「出力」を引数として埋める function schema
 tools = [
 {
 "type": "function",
 "function": {
 "name": "resolve_date_for_frankfurter",
 "description": (
 "Choose a SINGLE calendar day for "
 "the Frankfurter API. "
 "Return it in ISO 'YYYY-MM-DD'. Only return 'latest' "
 "when the text explicitly means "
 "the most recent available rate or "
 "when the date truly cannot be determined. "
 "Prefer a concrete past calendar day when possible. "
 "Honor the provided timezone and 'today'."
),
 "parameters": {
 "type": "object",

2

list6.txt
 "properties": {
 "normalized_date": {
 "type": "string",
 "description":
 "The resolved date for Frankfurter "
 "in 'YYYY-MM-DD' or 'latest'."
 },
 "confidence": {
 "type": "number",
 "description":
 "0.0-1.0 subjective confidence of the mapping",
 "minimum": 0.0, "maximum": 1.0
 },
 "policy_applied": {
 "type": "string",
 "description":
 "A short note of the disambiguation rule "
 "you applied."
 }
 },
 "required": ["normalized_date"]
 },
 },
 }
]

 # 強い指示＋少数ショット例で「latest」濫用を抑制
 system = (
 "You are a precise date normalizer for currency queries.\n"
 "Rules:\n"
 "1) Output exactly one calendar day in 'YYYY-MM-DD'.\n"
 "2) Only return 'latest' when the user literally means 'latest' "
 "or the date cannot be determined.\n"
 "3) Prefer a concrete, most likely intended past date if text is "
 "relative (e.g., 'last Friday').\n"
 "4) Respect the timezone and 'today' provided.\n"
 "5) If the text is a month/quarter/range, pick the most plausible "
 "single representative business day "
 "(e.g., the last calendar day of that period; if weekend/holiday "
 "ambiguity, pick the nearest prior weekday)."
)

 few_shot_examples = (
 f"Today (timezone={self.timezone}) is {today_str} ({weekday}). "
 "Examples:\n"
 "- 'last Friday' -> pick the Friday of the previous week "
 "in this timezone.\n"
 "- '2024/6/1' or 'June 1, 2024' -> 2024-06-01.\n"
 "- '2024-06' -> choose 2024-06-30 (or nearest prior weekday "
 "if rule 5 applies).\n"
 "- 'end of last month' -> choose the last calendar day of "
 "the previous month.\n"
 "- 'quarter 2 of 2024' -> choose 2024-06-30 "
 "(or prior weekday if needed).\n"
 "- 'latest' -> latest.\n"
 "Return via the function call ONLY."
)

 user = (
 "Normalize this free-form date text for Frankfurter.\n"
 f"Timezone: {self.timezone}\n"
 f"Today: {today_str} ({weekday})\n"
 f"Text: {date_raw}"
)

 messages = [
 {"role": "system", "content": system},
 {"role": "system", "content": few_shot_examples},
 {"role": "user", "content": user},
]

 resp = self.client.chat.completions.create(
 model=self.model,
 messages=messages,
 temperature=0,
 tools=tools,
 tool_choice={"type": "function",
 "function": {"name": "resolve_date_for_frankfurter"}},
)

 if not resp.choices or not resp.choices[0].message.tool_calls:
 # 一度は失敗し得るので、強制リトライ（latest 回避ルール明示）
 messages.insert(1, {"role": "system",
 "content":
 "Do NOT default to 'latest' "
 "unless strictly required."})
 resp = self.client.chat.completions.create(
 model=self.model,

3

list6.txt
 messages=messages,
 temperature=0,
 tools=tools,
 tool_choice={"type": "function",
 "function":
 {"name": "resolve_date_for_frankfurter"}},
)
 if not resp.choices or not resp.choices[0].message.tool_calls:
 return "latest", "LLM could not normalize the date; "
 "using 'latest'."

 args_raw = resp.choices[0].message.tool_calls[0].function.arguments
 try:
 args = json.loads(args_raw) \
 if isinstance(args_raw, str) else (args_raw or {})
 except Exception:
 return "latest", "LLM returned invalid arguments; using 'latest'."

 iso = (args.get("normalized_date") or "").strip()
 if not iso:
 return "latest", "LLM did not provide a normalized date; "
 "using 'latest'."

 # 軽い表層バリデーション（YYYY-MM-DD or 'latest'）
 if iso.lower() == "latest":
 # ユーザが 'latest' と言ってないのに latest を返した場合、もう一度だけ強制的に具体日を求める
 if date_raw.lower() != "latest":
 messages.insert(1, {"role": "system",
 "content": "User did NOT say 'latest'. "
 "Choose a concrete date."})
 resp2 = self.client.chat.completions.create(
 model=self.model,
 messages=messages,
 temperature=0,
 tools=tools,
 tool_choice={"type": "function",
 "function":
 {"name": "resolve_date_for_frankfurter"}},
)
 if resp2.choices and resp2.choices[0].message.tool_calls:
 args2_raw = (
 resp2.choices[0].
 message.tool_calls[0].
 function.arguments
)
 try:
 args2 = (
 json.loads(args2_raw)
 if isinstance(args2_raw, str)
 else (args2_raw or {})
)
 iso2 = (args2.get("normalized_date") or "").strip()
 if iso2 and iso2.lower() != "latest":
 return iso2, None
 except Exception:
 pass
 # どうしても具体日にできないなら latest
 return "latest", None

 # 'YYYY-MM-DD' の形式確認
 import re as _re
 if not _re.match(r"^\d{4}-\d{2}-\d{2}$", iso):
 return "latest", "LLM returned a non-ISO date; using 'latest'."

 return iso, None

 # =================
 # ストリーミング応答
 # =================
 async def stream(self, query_in: str,
 context_id: str) -> AsyncGenerator[dict[str, Any], None]:
 # 解析フェーズ
 yield {
 "is_task_complete": False,
 "require_user_input": False,
 "content": "入力を解析しています…",
 }

 # 簡易的なコンテキストの維持
 if context_id not in self.context_id2query:
 self.context_id2query[context_id] = ""
 self.context_id2query[context_id] += query_in + "\n"
 query = self.context_id2query[context_id]

 c_from, c_to, date_raw, parse_err = self._extract_params(query)
 if parse_err:
 yield {
 "is_task_complete": False,

4

list6.txt
 "require_user_input": True,
 "content": f"入力解析に失敗しました: {parse_err}\n"
 "例: `USD EUR` "
 "/ `usd jpy 2024-06-01` "
 "/ `米ドルをユーロに 先週の金曜`",
 }
 return

 missing = []
 if not c_from:
 missing.append("通貨（変換元, 3文字コード）")
 if not c_to:
 missing.append("通貨（変換先, 3文字コード）")

 if missing:
 yield {
 "is_task_complete": False,
 "require_user_input": True,
 "content": (
 "為替レートを取得するために次の情報が必要です："
 f"{' と '.join(missing)}。\n"
 "例: `USD EUR` や `usd jpy 先週の金曜`"
),
 }
 return

 if c_from == c_to:
 yield {
 "is_task_complete": True,
 "require_user_input": False,
 "content": f"{c_from} と {c_to} は同一通貨です。為替レートは常に 1.0 です。",
 }
 return

 # 日付正規化（モデル解釈）
 yield {
 "is_task_complete": False,
 "require_user_input": False,
 "content": f"日付を解釈しています…（指定: {date_raw or 'latest'}）",
 }
 date_norm, date_warn = self._normalize_date(date_raw or "latest")

 # レート取得
 yield {
 "is_task_complete": False,
 "require_user_input": False,
 "content": f"為替レートを取得中…（{c_from} → {c_to}, 日付: {date_norm}）",
 }

 data = get_exchange_rate(c_from, c_to, date_norm)

 # 整形
 yield {
 "is_task_complete": False,
 "require_user_input": False,
 "content": "結果を整形しています…",
 }

 if "error" in data:
 msg = f"取得に失敗しました：{data['error']}\n"
 if date_warn:
 msg += f"補足: {date_warn}\n"
 msg += "通貨コード（例: USD EUR）と、必要なら自然言語で日付を指定して再実行してください。"
 yield {
 "is_task_complete": False,
 "require_user_input": True,
 "content": msg,
 }
 return

 rate = data.get("rates", {}).get(c_to)
 if rate is None:
 yield {
 "is_task_complete": False,
 "require_user_input": True,
 "content": "指定の通貨コードが不正か、レートが取得できませんでした。\n"
 "例: `USD EUR 2024-06-01` や `USD EUR last Friday`。",
 }
 return

 date_used = data.get("date", date_norm)
 inv = 1.0 / rate if rate else None

 lines = [
 f"【為替レート】{c_from} → {c_to}",
 f"- 日付: {date_used}",
 f"- 1 {c_from} = {rate:.6f} {c_to}",
]

5

list6.txt
 if inv:
 lines.append(f"- 1 {c_to} = {inv:.6f} {c_from}")
 if date_warn:
 lines.append(f"\n注: {date_warn}")

 yield {
 "is_task_complete": True,
 "require_user_input": False,
 "content": "\n".join(lines),
 }

6

