
agent_executor.py
import logging

from a2a.server.agent_execution import AgentExecutor, RequestContext
from a2a.server.events import EventQueue
from a2a.server.tasks import TaskUpdater
from a2a.types import (InternalError, InvalidParamsError, Part, TaskState,
 TextPart, UnsupportedOperationError)
from a2a.utils import new_agent_text_message, new_task
from a2a.utils.errors import ServerError
from .agent import CurrencyAgent

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class CurrencyAgentExecutor(AgentExecutor):
 """Currency Conversion AgentExecutor Example."""

 def __init__(self):
 self.agent = CurrencyAgent()

 async def execute(
 self,
 context: RequestContext,
 event_queue: EventQueue,
) -> None:
 error = self._validate_request(context)
 if error:
 raise ServerError(error=InvalidParamsError())

 query = context.get_user_input()
 task = context.current_task
 if not task:
 task = new_task(context.message) # type: ignore
 await event_queue.enqueue_event(task)
 updater = TaskUpdater(event_queue, task.id, task.context_id)
 try:
 async for item in self.agent.stream(query, task.context_id):
 is_task_complete = item['is_task_complete']
 require_user_input = item['require_user_input']

 if not is_task_complete and not require_user_input:
 await updater.update_status(
 TaskState.working,
 new_agent_text_message(
 item['content'],
 task.context_id,
 task.id,
),
)
 elif require_user_input:
 await updater.update_status(
 TaskState.input_required,
 new_agent_text_message(
 item['content'],
 task.context_id,
 task.id,
),
 final=True,
)
 break
 else:

1

agent_executor.py
 await updater.add_artifact(
 [Part(root=TextPart(text=item['content']))],
 name='conversion_result',
)
 await updater.complete()
 break

 except Exception as e:
 logger.error('An error occurred while streaming the response: '
 f'{e}')
 raise ServerError(error=InternalError()) from e

 def _validate_request(self, context: RequestContext) -> bool:
 return False

 async def cancel(
 self, context: RequestContext, event_queue: EventQueue
) -> None:
 raise ServerError(error=UnsupportedOperationError())

2

